Publications

Response of Fish Assemblages to Restoration of Rapids Habitat in a Great Lakes Connecting Channel

Rapids habitats are critical spawning and nursery grounds for multiple Laurentian Great Lakes fishes of ecological importance such as lake sturgeon, walleye, and salmonids. However, river modifications have destroyed important rapids habitat in connecting channels by modifying flow profiles and removing large quantities of cobble and gravel that are preferred spawning substrates of several fish species. The conversion of rapids habitat to slow moving waters has altered fish assemblages and decreased the spawning success of lithophilic species. The St. Marys River is a Great Lakes connecting channel in which the majority of rapids habitat has been lost. However, rapids habitat was restored at the Little Rapids in 2016 to recover important spawning habitat in this river. During the restoration, flow and substrate were recovered to rapids habitat. We sampled the fish community (pre- and post-restoration), focusing on age-0 fishes in order to characterize the response of the fish assemblage to the restoration, particularly for species of importance (e.g. lake whitefish, walleye, Atlantic salmon). Following restoration, we observed a 40% increase in age-0 fish catch per unit effort, increased presence of rare species, and a shift in assemblage structure of age-0 fishes (higher relative abundance of Salmonidae, Cottidae, and Gasterosteidae). We also observed a ``transition’’ period in 2017, in which the assemblage was markedly different from the pre- and post-restoration assemblages and was dominated by Catostomidae. Responses from target species were mixed, with increased Atlantic salmon abundance, first documented presence of walleye and no presence of lake sturgeon or Coregoninae

Response of Fish Assemblages to Restoration of Rapids Habitat in a Great Lakes Connecting Channel

Rapids habitats are critical spawning and nursery grounds for multiple Laurentian Great Lakes fishes of ecological importance such as lake sturgeon, walleye, and salmonids. However, river modifications have destroyed important rapids habitat in connecting channels by modifying flow profiles and removing large quantities of cobble and gravel that are preferred spawning substrates of several fish species. The conversion of rapids habitat to slow moving waters has altered fish assemblages and decreased the spawning success of lithophilic species. The St. Marys River is a Great Lakes connecting channel in which the majority of rapids habitat has been lost. However, rapids habitat was restored at the Little Rapids in 2016 to recover important spawning habitat in this river. During the restoration, flow and substrate were recovered to rapids habitat. We sampled the fish community (pre- and post-restoration), focusing on age-0 fishes in order to characterize the response of the fish assemblage to the restoration, particularly for species of importance (e.g. lake whitefish, walleye, Atlantic salmon). Following restoration, we observed a 40% increase in age-0 fish catch per unit effort, increased presence of rare species, and a shift in assemblage structure of age-0 fishes (higher relative abundance of Salmonidae, Cottidae, and Gasterosteidae). We also observed a ``transition’’ period in 2017, in which the assemblage was markedly different from the pre- and post-restoration assemblages and was dominated by Catostomidae. Responses from target species were mixed, with increased Atlantic salmon abundance, first documented presence of walleye and no presence of lake sturgeon or Coregoninae

Movement, Survival, and Delays of Atlantic Salmon Smolts in the Piscataquis River, Maine, USA

Movement, delays, and survival of hatchery Atlantic Salmon Salmo salar smolts were evaluated through the Piscataquis River, a tributary of the Penobscot River in Maine, USA. We explored the effects of the river’s four dams (Guilford, Dover, Browns Mill, and Howland dams) from 2005 to 2019. During this period, the downstream-most dam (Howland Dam) transitioned from full hydropower generation to seasonal turbine shutdowns and later was decommissioned with the construction of a nature-like fish bypass in 2016. We estimated survival through open-river reaches and at each dam using acoustic telemetry (n = 1,611). Dams decreased survival, with per-river-kilometer (rkm) apparent survival averages of 0.972, 0.951, and 0.990 for Guilford, Dover, and Browns Mill dams compared to a per-rkm survival of 0.999 for open-river reaches. Turbine shutdowns increased survival at Howland Dam (to around 0.95), which was further increased by the nature-like fish bypass (0.99). We used radiotelemetry in 2019 (n = 75) and demonstrated that approximately one-third of the fish used the bypass, while the remaining fish used alternative routes. Smolts successfully passing the three upstream dams had lower apparent survival through Howland Dam than smolts that were released upstream of Howland Dam. Although smolts passing Browns Mill Dam had high survival, the dam caused extended delays, with median delay times surpassing 48 h in most years. Most of the delays caused by Browns Mill Dam occurred after fish had passed the dam and may indicate a sublethal effect of passage. Overall, while survival through Howland Dam has improved, passage and delays at the three upstream dams in aggregate represent a critical impediment to the effective use of the high-quality spawning habitat found upstream